Skip to content

GeoTensor

GeoTensor

This class is a wrapper around a numpy or torch tensor with geospatial information. It can store 2D, 3D or 4D tensors. The last two dimensions are the spatial dimensions.

Parameters:

Name Type Description Default
values Tensor

numpy or torch tensor (2D, 3D or 4D).

required
transform Affine

affine geospatial transform

required
crs Any

coordinate reference system

required
fill_value_default Optional[Union[int, float]]

Value to fill when reading out of bounds. Could be None. Defaults to 0.

0

Attributes:

Name Type Description
values Tensor

numpy or torch tensor

transform Affine

affine geospatial transform

crs Any

coordinate reference system

fill_value_default Optional[Union[int, float]]

Value to fill when reading out of bounds. Could be None. Defaults to 0.

shape Tuple

shape of the tensor

res Tuple[float, float]

resolution of the tensor

dtype

data type of the tensor

height int

height of the tensor

width int

width of the tensor

count int

number of bands in the tensor

bounds Tuple[float, float, float, float]

bounds of the tensor

dims Tuple[str]

names of the dimensions

attrs Dict[str, Any]

dictionary with the attributes of the GeoTensor

Examples:

>>> import numpy as np
>>> transform = rasterio.Affine(1, 0, 0, 0, -1, 0)
>>> crs = "EPSG:4326"
>>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
Source code in georeader/geotensor.py
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
class GeoTensor:
    """
        This class is a wrapper around a numpy or torch tensor with geospatial information.
        It can store 2D, 3D or 4D tensors. The last two dimensions are the spatial dimensions.

        Args:
            values (Tensor): numpy or torch tensor (2D, 3D or 4D).
            transform (rasterio.Affine): affine geospatial transform
            crs (Any): coordinate reference system
            fill_value_default (Optional[Union[int, float]], optional): Value to fill when 
                reading out of bounds. Could be None. Defaults to 0.

        Attributes:
            values (Tensor): numpy or torch tensor
            transform (rasterio.Affine): affine geospatial transform
            crs (Any): coordinate reference system
            fill_value_default (Optional[Union[int, float]], optional): Value to fill when 
                reading out of bounds. Could be None. Defaults to 0.
            shape (Tuple): shape of the tensor
            res (Tuple[float, float]): resolution of the tensor
            dtype: data type of the tensor
            height (int): height of the tensor
            width (int): width of the tensor
            count (int): number of bands in the tensor
            bounds (Tuple[float, float, float, float]): bounds of the tensor
            dims (Tuple[str]): names of the dimensions
            attrs (Dict[str, Any]): dictionary with the attributes of the GeoTensor

        Examples:
            >>> import numpy as np
            >>> transform = rasterio.Affine(1, 0, 0, 0, -1, 0)
            >>> crs = "EPSG:4326"
            >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)

    """

    def __init__(self, values:Tensor,
                 transform:rasterio.Affine, crs:Any,
                 fill_value_default:Optional[Union[int, float]]=0):
        """
        This class is a wrapper around a numpy or torch tensor with geospatial information.

        Args:
            values (Tensor): numpy or torch tensor
            transform (rasterio.Affine): affine geospatial transform
            crs (Any): coordinate reference system
            fill_value_default (Optional[Union[int, float]], optional): Value to fill when 
                reading out of bounds. Could be None. Defaults to 0.

        Raises:
            ValueError: when the shape of the tensor is not 2d, 3d or 4d.
        """
        self.values = values
        self.transform = transform
        self.crs = crs
        self.fill_value_default = fill_value_default
        shape = self.shape
        if (len(shape) < 2) or (len(shape) > 4):
            raise ValueError(f"Expected 2d-4d array found {shape}")

    @property
    def dims(self) -> Tuple[str]:
        # TODO allow different ordering of dimensions?
        shape = self.shape
        if len(shape) == 2:
            dims = ("y", "x")
        elif len(shape) == 3:
            dims = ("band", "y", "x")
        elif len(shape) == 4:
            dims = ("time", "band", "y", "x")
        else:
            raise ValueError(f"Unexpected 2d-4d array found {shape}")

        return dims

    def to_json(self) -> Dict[str, Any]:
        return {
            "values": self.values.tolist(),
            "transform": [self.transform.a,self.transform.b,self.transform.c, 
                          self.transform.d, self.transform.e, self.transform.f] ,
            "crs": str(self.crs),
            "fill_value_default": self.fill_value_default
        }

    @classmethod
    def from_json(cls, json:Dict[str, Any]) -> '__class__':
        return cls(np.array(json["values"]), 
                   rasterio.Affine(*json["transform"]),
                   json["crs"], 
                   json["fill_value_default"])

    @property
    def shape(self) -> Tuple:
        return tuple(self.values.shape)

    @property
    def res(self) -> Tuple[float, float]:
        return window_utils.res(self.transform)

    @property
    def dtype(self):
        return self.values.dtype

    @property
    def height(self) -> int:
        return self.shape[-2]

    @property
    def width(self) -> int:
        return self.shape[-1]

    @property
    def count(self) -> int:
        return self.shape[-3]

    @property
    def bounds(self) -> Tuple[float, float, float, float]:
        return window_bounds(rasterio.windows.Window(row_off=0, col_off=0, height=self.height, width=self.width),
                             self.transform)

    def set_dtype(self, dtype):
        # TODO implement for torch tensor
        self.values = self.values.astype(dtype=dtype)

    def astype(self, dtype) -> '__class__':
        return GeoTensor(self.values.astype(dtype), 
                         self.transform, self.crs, self.fill_value_default)

    @property
    def attrs(self) -> Dict[str, Any]:
        return vars(self)

    def meshgrid(self, dst_crs:Optional[Any]=None) -> Tuple[NDArray, NDArray]:
        from georeader import griddata
        return griddata.meshgrid(self.transform, self.width, self.height, source_crs=self.crs, dst_crs=dst_crs)

    def load(self) -> '__class__':
        return self

    def __copy__(self) -> '__class__':
        return GeoTensor(self.values.copy(), self.transform, self.crs, self.fill_value_default)

    def copy(self) -> '__class__':
        return self.__copy__()

    def same_extent(self, other:'__class__', precision:float=1e-3) -> bool:
        """
        Check if two GeoTensors have the same georeferencing (crs and transform)

        Args:
            other (__class__ | GeoData): GeoTensor to compare with. Other GeoData object can be passed (it requires crs, transform and shape attributes)
            precision (float, optional): precision to compare the transform. Defaults to 1e-3.

        Returns:
            bool: True if both GeoTensors have the same georeferencing.
        """
        return self.transform.almost_equals(other.transform, precision=precision) and window_utils.compare_crs(self.crs, other.crs) and (self.shape[-2:] == other.shape[-2:])

    def __add__(self, other:Union[numbers.Number,'__class__']) -> '__class__':
        """ 
        Add two GeoTensors. The georeferencing must match.

        Args:
            other (GeoTensor): GeoTensor to add.

        Raises:
            ValueError: if the georeferencing does not match.
            TypeError: if other is not a GeoTensor.

        Returns:
            GeoTensor: GeoTensor with the result of the addition.
        """
        if isinstance(other, GeoTensor):
            if self.same_extent(other):
                other =  other.values
            else:
                raise ValueError("GeoTensor georref must match for addition. "
                                 "Use `read.read_reproject_like(other, self)` to "
                                 "to reproject `other` to `self` georreferencing.")

        result_values = self.values + other

        return GeoTensor(result_values, transform=self.transform, crs=self.crs,
                         fill_value_default=self.fill_value_default)

    def __sub__(self, other:Union[numbers.Number,'__class__']) -> '__class__':
        """
        Substract two GeoTensors. The georeferencing must match.

        Args:
            other (GeoTensor): GeoTensor to add.

        Raises:
            ValueError: if the georeferencing does not match.
            TypeError: if other is not a GeoTensor.

        Returns:
            GeoTensor: GeoTensor with the result of the substraction.

        """
        if isinstance(other, GeoTensor):
            if self.same_extent(other):
                other =  other.values
            else:
                raise ValueError("GeoTensor georref must match for substraction. "
                                 "Use `read.read_reproject_like(other, self)` to "
                                 "to reproject `other` to `self` georreferencing.")

        result_values = self.values - other

        return GeoTensor(result_values, transform=self.transform, crs=self.crs,
                         fill_value_default=self.fill_value_default)

    def __mul__(self, other:Union[numbers.Number,'__class__']) -> '__class__':
        """
        Multiply two GeoTensors. The georeferencing must match.

        Args:
            other (GeoTensor): GeoTensor to add.

        Raises:
            ValueError: if the georeferencing does not match.
            TypeError: if other is not a GeoTensor.

        Returns:
            GeoTensor: GeoTensor with the result of the multiplication.
        """
        if isinstance(other, GeoTensor):
            if self.same_extent(other):
                other =  other.values
            else:
                raise ValueError("GeoTensor georref must match for multiplication. "
                                 "Use `read.read_reproject_like(other, self)` to "
                                 "to reproject `other` to `self` georreferencing.")

        result_values = self.values * other

        return GeoTensor(result_values, transform=self.transform, crs=self.crs,
                         fill_value_default=self.fill_value_default)

    def __truediv__(self, other:Union[ArrayLike,'__class__']) -> '__class__':
        """
        Divide two GeoTensors. The georeferencing must match.

        Args:
            other (GeoTensor): GeoTensor to add.

        Raises:
            ValueError: if the georeferencing does not match.
            TypeError: if other is not a GeoTensor.

        Returns:
            GeoTensor: GeoTensor with the result of the division.
        """
        if isinstance(other, GeoTensor):
            if self.same_extent(other):
                other =  other.values
            else:
                raise ValueError("GeoTensor georref must match for division. "
                                 "Use `read.read_reproject_like(other, self)` to "
                                 "to reproject `other` to `self` georreferencing.")

        result_values = self.values / other

        return GeoTensor(result_values, transform=self.transform, crs=self.crs,
                         fill_value_default=self.fill_value_default)

    def __setitem__(self, index: np.ndarray, value: Union[np.ndarray, numbers.Number]) -> None:
        """
        Set the values of the GeoTensor object using an index and a new value.

        Args:
            index (tuple or numpy.ndarray): Index or boolean mask to apply to the GeoTensor values.
            value (numpy.ndarray): New value to assign to the GeoTensor values at the specified index.

        Raises:
            ValueError: If the index is not a tuple or a boolean numpy array with the same shape as the GeoTensor values.

        Examples:
            >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
            >>> boolmask = gt.values > 0.5
            >>> gt[boolmask] = 0.5
        """
        if isinstance(index, np.ndarray) and (index.dtype == bool) and (index.shape == self.values.shape):
            # If the index is a boolean numpy array with the same shape as the values,
            # use it to mask the values and assign the new values to the masked values
            self.values[index] = value
        else:
            raise ValueError(f"Unsupported index type {type(index)} {index.dtype} {index} for GeoTensor set operation.")

    def squeeze(self) -> '__class__':
        """
        Remove single-dimensional entries from the shape of the GeoTensor values.
        It does not squeeze the spatial dimensions (last two dimensions).

        Returns:
            GeoTensor: GeoTensor with the squeezed values.
        """

        # squeeze all but last two dimensions
        squeezed_values = np.squeeze(self.values, axis=tuple(range(self.values.ndim - 2)))

        return GeoTensor(squeezed_values, transform=self.transform, crs=self.crs,
                         fill_value_default=self.fill_value_default)

    def clip(self, a_min:Optional[np.array], a_max:Optional[np.array]) -> '__class__':
        """
        Clip the GeoTensor values between the GeoTensor min and max values.

        Args:
            a_min (float): Minimum value.
            a_max (float): Maximum value.

        Returns:
            GeoTensor: GeoTensor with the clipped values.
        """
        clipped_values = np.clip(self.values, a_min, a_max)
        return GeoTensor(clipped_values, transform=self.transform, crs=self.crs,
                         fill_value_default=self.fill_value_default)


    def isel(self, sel: Dict[str, Union[slice, list, int]]) -> '__class__':
        """
        Slicing with dict. It doesn't work with negative indexes!

        Args:
            sel: Dict with slice selection; i.e. `{"x": slice(10, 20), "y": slice(20, 340)}`.

        Returns:
            GeoTensor: GeoTensor with the sliced values.

        Examples:
            >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
            >>> gt.isel({"x": slice(10, 20), "y": slice(20, 340)})
        """
        for k in sel:
            if k not in self.dims:
                raise NotImplementedError(f"Axis {k} not in {self.dims}")

        slice_list = self._slice_tuple(sel)

        slices_window = []
        for k in ["y", "x"]:
            if k in sel:
                if not isinstance(sel[k], slice):
                    raise NotImplementedError(f"Only slice selection supported for x, y dims, found {sel[k]}")
                slices_window.append(sel[k])
            else:
                size = self.width if (k == "x") else self.height
                slices_window.append(slice(0, size))

        window_current = rasterio.windows.Window.from_slices(*slices_window, boundless=False, height=self.height,
                                                             width=self.width)

        transform_current = rasterio.windows.transform(window_current, transform=self.transform)

        return GeoTensor(self.values[slice_list], transform_current, self.crs,
                         self.fill_value_default)

    def _slice_tuple(self, sel: Dict[str, Union[slice, list, int]]) -> tuple:
        slice_list = []
        # shape_ = self.shape
        # sel_copy = sel.copy()
        for _i, k in enumerate(self.dims):
            if k in sel:
                if not isinstance(sel[k], slice) and not isinstance(sel[k], list) and not isinstance(sel[k], int):
                    raise NotImplementedError(f"Only slice selection supported for x, y dims, found {sel[k]}")
                # sel_copy[k] = slice(max(0, sel_copy[k].start), min(shape_[_i], sel_copy[k].stop))
                slice_list.append(sel[k])
            else:
                slice_list.append(slice(None))
        return tuple(slice_list)

    def footprint(self, crs:Optional[str]=None) -> Polygon:
        """Returns the footprint of the GeoTensor as a Polygon.

        Args:
            crs (Optional[str], optional): Coordinate reference system. Defaults to None.

        Returns:
            Polygon: footprint of the GeoTensor.

        Examples:
            >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
            >>> gt.footprint(crs="EPSG:4326") # returns a Polygon in WGS84
        """
        pol = window_utils.window_polygon(rasterio.windows.Window(row_off=0, col_off=0, height=self.shape[-2], width=self.shape[-1]),
                                          self.transform)
        if (crs is None) or window_utils.compare_crs(self.crs, crs):
            return pol

        return window_utils.polygon_to_crs(pol, self.crs, crs)

    def valid_footprint(self, crs:Optional[str]=None, method:str="all") -> Union[MultiPolygon, Polygon]:
        """
        vectorizes the valid values of the GeoTensor and returns the footprint as a Polygon.

        Args:
            crs (Optional[str], optional): Coordinate reference system. Defaults to None.
            method (str, optional): "all" or "any" to aggregate the channels of the image. Defaults to "all".

        Returns:
            Polygon or MultiPolygon: footprint of the GeoTensor.
        """
        valid_values = self.values != self.fill_value_default
        if len(valid_values.shape) > 2:
            if method == "all":
                valid_values = np.all(valid_values, 
                                      axis=tuple(np.arange(0, len(valid_values.shape)-2).tolist()))
            elif method == "any":
                valid_values = np.any(valid_values, 
                                      axis=tuple(np.arange(0, len(valid_values.shape)-2).tolist()))
            else:
                raise NotImplementedError(f"Method {method} to aggregate channels not implemented")

        from georeader import vectorize
        polygons = vectorize.get_polygons(valid_values, transform=self.transform)
        if len(polygons) == 0:
            raise ValueError("GeoTensor has no valid values")
        elif len(polygons) == 1:
            pol = polygons[0]
        else:
            pol = MultiPolygon(polygons)
        if crs is None:
            return pol

        return window_utils.polygon_to_crs(pol, self.crs, crs)

    def __repr__(self)->str:
        return f""" 
         Transform: {self.transform}
         Shape: {self.shape}
         Resolution: {self.res}
         Bounds: {self.bounds}
         CRS: {self.crs}
         fill_value_default: {self.fill_value_default}
        """

    def pad(self, pad_width:Dict[str, Tuple[int, int]], mode:str="constant",
            constant_values:Optional[Any]=None)-> '__class__':
        """
        Pad the GeoTensor.

        Args:
            pad_width (_type_, optional):  dictionary with Tuple to pad for each dimension 
                `{"x": (pad_x_0, pad_x_1), "y": (pad_y_0, pad_y_1)}`. 
            mode (str, optional): pad mode (see np.pad or torch.nn.functional.pad). Defaults to "constant".
            constant_values (Any, optional): _description_. Defaults to `self.fill_value_default`.

        Returns:
            GeoTensor: padded GeoTensor.

        Examples:
            >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
            >>> gt.pad({"x": (10, 10), "y": (10, 10)})
            >>> assert gt.shape == (3, 120, 120)
        """
        if constant_values is None and mode == "constant":
            constant_values = self.fill_value_default

        # Pad the data
        pad_torch = False
        if torch_installed:
            if isinstance(self.values, torch.Tensor):
                pad_torch = True

        if pad_torch:
            pad_list_torch = []
            for k in reversed(self.dims):
                if k in pad_width:
                    pad_list_torch.extend(list(pad_width[k]))
                else:
                    pad_list_torch.extend([0,0])

            kwargs_extra = {}
            if mode == "constant":
                kwargs_extra["value"] = constant_values
            values_new = torch.nn.functional.pad(self.values, tuple(pad_list_torch), mode=mode, **kwargs_extra)
        else:
            pad_list_np = []
            for k in self.dims:
                if k in pad_width:
                    pad_list_np.append(pad_width[k])
                else:
                    pad_list_np.append((0,0))

            kwargs_extra = {}
            if mode == "constant":
                kwargs_extra["constant_values"] = constant_values
            values_new = np.pad(self.values, tuple(pad_list_np), mode=mode, **kwargs_extra)

        # Compute the new transform
        slices_window = []
        for k in ["y", "x"]:
            size = self.width if (k == "x") else self.height
            if k in pad_width:
                slices_window.append(slice(-pad_width[k][0], size+pad_width[k][1]))
            else:
                slices_window.append(slice(0, size))

        window_current = rasterio.windows.Window.from_slices(*slices_window, boundless=True)
        transform_current = rasterio.windows.transform(window_current, transform=self.transform)
        return GeoTensor(values_new, transform_current, self.crs,
                         self.fill_value_default)

    def resize(self, output_shape:Optional[Tuple[int,int]]=None,
               resolution_dst:Optional[Tuple[float,float]]=None,
               anti_aliasing:bool=True, anti_aliasing_sigma:Optional[Union[float,np.ndarray]]=None,
               interpolation:Optional[str]="bilinear",
               mode_pad:str="constant")-> '__class__':
        """
        Resize the geotensor to match a certain size output_shape. This function works with GeoTensors of 2D, 3D and 4D.
        The geoinformation of the output tensor is changed accordingly.

        Args:
            output_shape: output spatial shape if None resolution_dst must be provided. If not provided, 
                the output shape is computed from the resolution_dst rounding to the closest integer.
            resolution_dst: output resolution if None output_shape must be provided.
            anti_aliasing: Whether to apply a Gaussian filter to smooth the image prior to downsampling
            anti_aliasing_sigma:  anti_aliasing_sigma : {float}, optional
                Standard deviation for Gaussian filtering used when anti-aliasing.
                By default, this value is chosen as (s - 1) / 2 where s is the
                downsampling factor, where s > 1
            interpolation: Algorithm used for resizing: 'nearest' | 'bilinear' | 'bicubic'
            mode_pad: mode pad for resize function

        Returns:
             resized GeoTensor

        Examples:
            >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
            >>> resized = gt.resize((50, 50))
            >>> assert resized.shape == (3, 50, 50)
            >>> assert resized.res == (2*gt.res[0], 2*gt.res[1])
        """
        input_shape = self.shape
        spatial_shape = input_shape[-2:]
        resolution_or = self.res


        assert len(output_shape) == 2, f"Expected output shape to be the spatial dimensions found: {output_shape}"
        if output_shape is None:
            assert resolution_dst is not None, f"Can't have output_shape and resolution_dst as None"
            output_shape = int(round(spatial_shape[0] / resolution_or[0] * resolution_dst[0])), \
                            int(round(spatial_shape[1] / resolution_or[1] * resolution_dst[1]))

        else:
            assert resolution_dst is None, f"Both output_shape and resolution_dst can't be provided"
            resolution_dst =  spatial_shape[0]*resolution_or[0]/output_shape[0], \
                          spatial_shape[1]*resolution_or[1]/output_shape[1]

        # Compute output transform
        transform_scale = rasterio.Affine.scale(resolution_dst[0]/resolution_or[0], resolution_dst[1]/resolution_or[1])
        transform = self.transform * transform_scale

        resize_kornia = False
        if torch_installed:
            if isinstance(self.values, torch.Tensor):
                resize_kornia = True

        if resize_kornia:
            # TODO
            # https://kornia.readthedocs.io/en/latest/geometry.transform.html#kornia.geometry.transform.resize
            raise NotImplementedError(f"Not implemented for torch Tensors")
        else:
            from skimage.transform import resize
            # https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize
            output_tensor = np.ndarray(input_shape[:-2]+output_shape, dtype=self.dtype)
            if len(input_shape) == 4:
                for i,j in product(range(0,input_shape[0]), range(0, input_shape[1])):
                    if (not anti_aliasing) or (anti_aliasing_sigma is None) or isinstance(anti_aliasing_sigma, numbers.Number):
                        anti_aliasing_sigma_iter = anti_aliasing_sigma
                    else:
                        anti_aliasing_sigma_iter = anti_aliasing_sigma[i, j]
                    output_tensor[i,j] = resize(self.values[i,j], output_shape, order=ORDERS[interpolation],
                                                anti_aliasing=anti_aliasing, preserve_range=False,
                                                cval=self.fill_value_default,mode=mode_pad,
                                                anti_aliasing_sigma=anti_aliasing_sigma_iter)
            elif len(input_shape) == 3:
                for i in range(0,input_shape[0]):
                    if (not anti_aliasing) or (anti_aliasing_sigma is None) or isinstance(anti_aliasing_sigma, numbers.Number):
                        anti_aliasing_sigma_iter = anti_aliasing_sigma
                    else:
                        anti_aliasing_sigma_iter = anti_aliasing_sigma[i]
                    output_tensor[i] = resize(self.values[i], output_shape, order=ORDERS[interpolation],
                                              anti_aliasing=anti_aliasing, preserve_range=False,
                                              cval=self.fill_value_default,mode=mode_pad,
                                              anti_aliasing_sigma=anti_aliasing_sigma_iter)
            else:
                output_tensor[...] = resize(self.values, output_shape, order=ORDERS[interpolation],
                                            anti_aliasing=anti_aliasing, preserve_range=False,
                                            cval=self.fill_value_default,mode=mode_pad,
                                            anti_aliasing_sigma=anti_aliasing_sigma)

        return GeoTensor(output_tensor, transform=transform, crs=self.crs,
                         fill_value_default=self.fill_value_default)

    def write_from_window(self, data:Tensor, window:rasterio.windows.Window):
        """
        Writes array to GeoTensor values object at the given window position. If window surpasses the bounds of this
        object it crops the data to fit the object.

        Args:
            data: Tensor to write. Expected: spatial dimensions `window.width`, `window.height`. Rest: same as `self`
            window: Window object that specifies the spatial location to write the data

        Examples:
            >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
            >>> data = np.random.rand(3, 50, 50)
            >>> window = rasterio.windows.Window(col_off=7, row_off=9, width=50, height=50)
            >>> gt.write_from_window(data, window)

        """
        window_data = rasterio.windows.Window(col_off=0, row_off=0,
                                              width=self.width, height=self.height)
        if not rasterio.windows.intersect(window, window_data):
            return

        assert data.shape[-2:] == (window.width, window.height), f"window {window} has different shape than data {data.shape}"
        assert data.shape[:-2] == self.shape[:-2], f"Dimension of data in non-spatial channels found {data.shape} expected: {self.shape}"

        slice_dict, pad_width = window_utils.get_slice_pad(window_data, window)
        slice_list = self._slice_tuple(slice_dict)
        # need_pad = any(p != 0 for p in pad_width["x"] + pad_width["y"])

        slice_data_spatial_x = slice(pad_width["x"][0], None if pad_width["x"][1] == 0 else -pad_width["x"][1])
        slice_data_spatial_y = slice(pad_width["y"][0], None if pad_width["y"][1] == 0 else -pad_width["y"][1])
        slice_data = self._slice_tuple({"x": slice_data_spatial_x, "y" : slice_data_spatial_y})
        self.values[slice_list] = data[slice_data]

    def read_from_window(self, window:rasterio.windows.Window, boundless:bool=True) -> '__class__':
        """
        returns a new GeoTensor object with the spatial dimensions sliced

        Args:
            window: window to slice the current GeoTensor
            boundless: read from window in boundless mode (i.e. if the window is larger or negative it will pad
                the GeoTensor with `self.fill_value_default`)

        Raises:
            rasterio.windows.WindowError: if `window` does not intersect the data

        Returns:
            GeoTensor object with the spatial dimensions sliced

        """

        window_data = rasterio.windows.Window(col_off=0, row_off=0,
                                              width=self.width, height=self.height)
        if boundless:
            slice_dict, pad_width = window_utils.get_slice_pad(window_data, window)
            need_pad = any(p != 0 for p in pad_width["x"] + pad_width["y"])
            X_sliced = self.isel(slice_dict)
            if need_pad:
                X_sliced = X_sliced.pad(pad_width=pad_width, mode="constant",
                                        constant_values=self.fill_value_default)
            return X_sliced
        else:
            window_read = rasterio.windows.intersection(window, window_data)
            slice_y, slice_x = window_read.toslices()
            slice_dict = {"x": slice_x, "y": slice_y}
            slices_ = self._slice_tuple(slice_dict)
            transform_current = rasterio.windows.transform(window_read, transform=self.transform)
            return GeoTensor(self.values[slices_], transform_current, self.crs,
                             self.fill_value_default)

__add__(other)

Add two GeoTensors. The georeferencing must match.

Parameters:

Name Type Description Default
other GeoTensor

GeoTensor to add.

required

Raises:

Type Description
ValueError

if the georeferencing does not match.

TypeError

if other is not a GeoTensor.

Returns:

Name Type Description
GeoTensor __class__

GeoTensor with the result of the addition.

Source code in georeader/geotensor.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def __add__(self, other:Union[numbers.Number,'__class__']) -> '__class__':
    """ 
    Add two GeoTensors. The georeferencing must match.

    Args:
        other (GeoTensor): GeoTensor to add.

    Raises:
        ValueError: if the georeferencing does not match.
        TypeError: if other is not a GeoTensor.

    Returns:
        GeoTensor: GeoTensor with the result of the addition.
    """
    if isinstance(other, GeoTensor):
        if self.same_extent(other):
            other =  other.values
        else:
            raise ValueError("GeoTensor georref must match for addition. "
                             "Use `read.read_reproject_like(other, self)` to "
                             "to reproject `other` to `self` georreferencing.")

    result_values = self.values + other

    return GeoTensor(result_values, transform=self.transform, crs=self.crs,
                     fill_value_default=self.fill_value_default)

__init__(values, transform, crs, fill_value_default=0)

This class is a wrapper around a numpy or torch tensor with geospatial information.

Parameters:

Name Type Description Default
values Tensor

numpy or torch tensor

required
transform Affine

affine geospatial transform

required
crs Any

coordinate reference system

required
fill_value_default Optional[Union[int, float]]

Value to fill when reading out of bounds. Could be None. Defaults to 0.

0

Raises:

Type Description
ValueError

when the shape of the tensor is not 2d, 3d or 4d.

Source code in georeader/geotensor.py
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def __init__(self, values:Tensor,
             transform:rasterio.Affine, crs:Any,
             fill_value_default:Optional[Union[int, float]]=0):
    """
    This class is a wrapper around a numpy or torch tensor with geospatial information.

    Args:
        values (Tensor): numpy or torch tensor
        transform (rasterio.Affine): affine geospatial transform
        crs (Any): coordinate reference system
        fill_value_default (Optional[Union[int, float]], optional): Value to fill when 
            reading out of bounds. Could be None. Defaults to 0.

    Raises:
        ValueError: when the shape of the tensor is not 2d, 3d or 4d.
    """
    self.values = values
    self.transform = transform
    self.crs = crs
    self.fill_value_default = fill_value_default
    shape = self.shape
    if (len(shape) < 2) or (len(shape) > 4):
        raise ValueError(f"Expected 2d-4d array found {shape}")

__mul__(other)

Multiply two GeoTensors. The georeferencing must match.

Parameters:

Name Type Description Default
other GeoTensor

GeoTensor to add.

required

Raises:

Type Description
ValueError

if the georeferencing does not match.

TypeError

if other is not a GeoTensor.

Returns:

Name Type Description
GeoTensor __class__

GeoTensor with the result of the multiplication.

Source code in georeader/geotensor.py
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def __mul__(self, other:Union[numbers.Number,'__class__']) -> '__class__':
    """
    Multiply two GeoTensors. The georeferencing must match.

    Args:
        other (GeoTensor): GeoTensor to add.

    Raises:
        ValueError: if the georeferencing does not match.
        TypeError: if other is not a GeoTensor.

    Returns:
        GeoTensor: GeoTensor with the result of the multiplication.
    """
    if isinstance(other, GeoTensor):
        if self.same_extent(other):
            other =  other.values
        else:
            raise ValueError("GeoTensor georref must match for multiplication. "
                             "Use `read.read_reproject_like(other, self)` to "
                             "to reproject `other` to `self` georreferencing.")

    result_values = self.values * other

    return GeoTensor(result_values, transform=self.transform, crs=self.crs,
                     fill_value_default=self.fill_value_default)

__setitem__(index, value)

Set the values of the GeoTensor object using an index and a new value.

Parameters:

Name Type Description Default
index tuple or ndarray

Index or boolean mask to apply to the GeoTensor values.

required
value ndarray

New value to assign to the GeoTensor values at the specified index.

required

Raises:

Type Description
ValueError

If the index is not a tuple or a boolean numpy array with the same shape as the GeoTensor values.

Examples:

>>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> boolmask = gt.values > 0.5
>>> gt[boolmask] = 0.5
Source code in georeader/geotensor.py
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
def __setitem__(self, index: np.ndarray, value: Union[np.ndarray, numbers.Number]) -> None:
    """
    Set the values of the GeoTensor object using an index and a new value.

    Args:
        index (tuple or numpy.ndarray): Index or boolean mask to apply to the GeoTensor values.
        value (numpy.ndarray): New value to assign to the GeoTensor values at the specified index.

    Raises:
        ValueError: If the index is not a tuple or a boolean numpy array with the same shape as the GeoTensor values.

    Examples:
        >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> boolmask = gt.values > 0.5
        >>> gt[boolmask] = 0.5
    """
    if isinstance(index, np.ndarray) and (index.dtype == bool) and (index.shape == self.values.shape):
        # If the index is a boolean numpy array with the same shape as the values,
        # use it to mask the values and assign the new values to the masked values
        self.values[index] = value
    else:
        raise ValueError(f"Unsupported index type {type(index)} {index.dtype} {index} for GeoTensor set operation.")

__sub__(other)

Substract two GeoTensors. The georeferencing must match.

Parameters:

Name Type Description Default
other GeoTensor

GeoTensor to add.

required

Raises:

Type Description
ValueError

if the georeferencing does not match.

TypeError

if other is not a GeoTensor.

Returns:

Name Type Description
GeoTensor __class__

GeoTensor with the result of the substraction.

Source code in georeader/geotensor.py
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
def __sub__(self, other:Union[numbers.Number,'__class__']) -> '__class__':
    """
    Substract two GeoTensors. The georeferencing must match.

    Args:
        other (GeoTensor): GeoTensor to add.

    Raises:
        ValueError: if the georeferencing does not match.
        TypeError: if other is not a GeoTensor.

    Returns:
        GeoTensor: GeoTensor with the result of the substraction.

    """
    if isinstance(other, GeoTensor):
        if self.same_extent(other):
            other =  other.values
        else:
            raise ValueError("GeoTensor georref must match for substraction. "
                             "Use `read.read_reproject_like(other, self)` to "
                             "to reproject `other` to `self` georreferencing.")

    result_values = self.values - other

    return GeoTensor(result_values, transform=self.transform, crs=self.crs,
                     fill_value_default=self.fill_value_default)

__truediv__(other)

Divide two GeoTensors. The georeferencing must match.

Parameters:

Name Type Description Default
other GeoTensor

GeoTensor to add.

required

Raises:

Type Description
ValueError

if the georeferencing does not match.

TypeError

if other is not a GeoTensor.

Returns:

Name Type Description
GeoTensor __class__

GeoTensor with the result of the division.

Source code in georeader/geotensor.py
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def __truediv__(self, other:Union[ArrayLike,'__class__']) -> '__class__':
    """
    Divide two GeoTensors. The georeferencing must match.

    Args:
        other (GeoTensor): GeoTensor to add.

    Raises:
        ValueError: if the georeferencing does not match.
        TypeError: if other is not a GeoTensor.

    Returns:
        GeoTensor: GeoTensor with the result of the division.
    """
    if isinstance(other, GeoTensor):
        if self.same_extent(other):
            other =  other.values
        else:
            raise ValueError("GeoTensor georref must match for division. "
                             "Use `read.read_reproject_like(other, self)` to "
                             "to reproject `other` to `self` georreferencing.")

    result_values = self.values / other

    return GeoTensor(result_values, transform=self.transform, crs=self.crs,
                     fill_value_default=self.fill_value_default)

clip(a_min, a_max)

Clip the GeoTensor values between the GeoTensor min and max values.

Parameters:

Name Type Description Default
a_min float

Minimum value.

required
a_max float

Maximum value.

required

Returns:

Name Type Description
GeoTensor __class__

GeoTensor with the clipped values.

Source code in georeader/geotensor.py
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def clip(self, a_min:Optional[np.array], a_max:Optional[np.array]) -> '__class__':
    """
    Clip the GeoTensor values between the GeoTensor min and max values.

    Args:
        a_min (float): Minimum value.
        a_max (float): Maximum value.

    Returns:
        GeoTensor: GeoTensor with the clipped values.
    """
    clipped_values = np.clip(self.values, a_min, a_max)
    return GeoTensor(clipped_values, transform=self.transform, crs=self.crs,
                     fill_value_default=self.fill_value_default)

footprint(crs=None)

Returns the footprint of the GeoTensor as a Polygon.

Parameters:

Name Type Description Default
crs Optional[str]

Coordinate reference system. Defaults to None.

None

Returns:

Name Type Description
Polygon Polygon

footprint of the GeoTensor.

Examples:

>>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt.footprint(crs="EPSG:4326") # returns a Polygon in WGS84
Source code in georeader/geotensor.py
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
def footprint(self, crs:Optional[str]=None) -> Polygon:
    """Returns the footprint of the GeoTensor as a Polygon.

    Args:
        crs (Optional[str], optional): Coordinate reference system. Defaults to None.

    Returns:
        Polygon: footprint of the GeoTensor.

    Examples:
        >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt.footprint(crs="EPSG:4326") # returns a Polygon in WGS84
    """
    pol = window_utils.window_polygon(rasterio.windows.Window(row_off=0, col_off=0, height=self.shape[-2], width=self.shape[-1]),
                                      self.transform)
    if (crs is None) or window_utils.compare_crs(self.crs, crs):
        return pol

    return window_utils.polygon_to_crs(pol, self.crs, crs)

isel(sel)

Slicing with dict. It doesn't work with negative indexes!

Parameters:

Name Type Description Default
sel Dict[str, Union[slice, list, int]]

Dict with slice selection; i.e. {"x": slice(10, 20), "y": slice(20, 340)}.

required

Returns:

Name Type Description
GeoTensor __class__

GeoTensor with the sliced values.

Examples:

>>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt.isel({"x": slice(10, 20), "y": slice(20, 340)})
Source code in georeader/geotensor.py
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
def isel(self, sel: Dict[str, Union[slice, list, int]]) -> '__class__':
    """
    Slicing with dict. It doesn't work with negative indexes!

    Args:
        sel: Dict with slice selection; i.e. `{"x": slice(10, 20), "y": slice(20, 340)}`.

    Returns:
        GeoTensor: GeoTensor with the sliced values.

    Examples:
        >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt.isel({"x": slice(10, 20), "y": slice(20, 340)})
    """
    for k in sel:
        if k not in self.dims:
            raise NotImplementedError(f"Axis {k} not in {self.dims}")

    slice_list = self._slice_tuple(sel)

    slices_window = []
    for k in ["y", "x"]:
        if k in sel:
            if not isinstance(sel[k], slice):
                raise NotImplementedError(f"Only slice selection supported for x, y dims, found {sel[k]}")
            slices_window.append(sel[k])
        else:
            size = self.width if (k == "x") else self.height
            slices_window.append(slice(0, size))

    window_current = rasterio.windows.Window.from_slices(*slices_window, boundless=False, height=self.height,
                                                         width=self.width)

    transform_current = rasterio.windows.transform(window_current, transform=self.transform)

    return GeoTensor(self.values[slice_list], transform_current, self.crs,
                     self.fill_value_default)

pad(pad_width, mode='constant', constant_values=None)

Pad the GeoTensor.

Parameters:

Name Type Description Default
pad_width _type_

dictionary with Tuple to pad for each dimension {"x": (pad_x_0, pad_x_1), "y": (pad_y_0, pad_y_1)}.

required
mode str

pad mode (see np.pad or torch.nn.functional.pad). Defaults to "constant".

'constant'
constant_values Any

description. Defaults to self.fill_value_default.

None

Returns:

Name Type Description
GeoTensor __class__

padded GeoTensor.

Examples:

>>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt.pad({"x": (10, 10), "y": (10, 10)})
>>> assert gt.shape == (3, 120, 120)
Source code in georeader/geotensor.py
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
def pad(self, pad_width:Dict[str, Tuple[int, int]], mode:str="constant",
        constant_values:Optional[Any]=None)-> '__class__':
    """
    Pad the GeoTensor.

    Args:
        pad_width (_type_, optional):  dictionary with Tuple to pad for each dimension 
            `{"x": (pad_x_0, pad_x_1), "y": (pad_y_0, pad_y_1)}`. 
        mode (str, optional): pad mode (see np.pad or torch.nn.functional.pad). Defaults to "constant".
        constant_values (Any, optional): _description_. Defaults to `self.fill_value_default`.

    Returns:
        GeoTensor: padded GeoTensor.

    Examples:
        >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt.pad({"x": (10, 10), "y": (10, 10)})
        >>> assert gt.shape == (3, 120, 120)
    """
    if constant_values is None and mode == "constant":
        constant_values = self.fill_value_default

    # Pad the data
    pad_torch = False
    if torch_installed:
        if isinstance(self.values, torch.Tensor):
            pad_torch = True

    if pad_torch:
        pad_list_torch = []
        for k in reversed(self.dims):
            if k in pad_width:
                pad_list_torch.extend(list(pad_width[k]))
            else:
                pad_list_torch.extend([0,0])

        kwargs_extra = {}
        if mode == "constant":
            kwargs_extra["value"] = constant_values
        values_new = torch.nn.functional.pad(self.values, tuple(pad_list_torch), mode=mode, **kwargs_extra)
    else:
        pad_list_np = []
        for k in self.dims:
            if k in pad_width:
                pad_list_np.append(pad_width[k])
            else:
                pad_list_np.append((0,0))

        kwargs_extra = {}
        if mode == "constant":
            kwargs_extra["constant_values"] = constant_values
        values_new = np.pad(self.values, tuple(pad_list_np), mode=mode, **kwargs_extra)

    # Compute the new transform
    slices_window = []
    for k in ["y", "x"]:
        size = self.width if (k == "x") else self.height
        if k in pad_width:
            slices_window.append(slice(-pad_width[k][0], size+pad_width[k][1]))
        else:
            slices_window.append(slice(0, size))

    window_current = rasterio.windows.Window.from_slices(*slices_window, boundless=True)
    transform_current = rasterio.windows.transform(window_current, transform=self.transform)
    return GeoTensor(values_new, transform_current, self.crs,
                     self.fill_value_default)

read_from_window(window, boundless=True)

returns a new GeoTensor object with the spatial dimensions sliced

Parameters:

Name Type Description Default
window Window

window to slice the current GeoTensor

required
boundless bool

read from window in boundless mode (i.e. if the window is larger or negative it will pad the GeoTensor with self.fill_value_default)

True

Raises:

Type Description
WindowError

if window does not intersect the data

Returns:

Type Description
__class__

GeoTensor object with the spatial dimensions sliced

Source code in georeader/geotensor.py
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
def read_from_window(self, window:rasterio.windows.Window, boundless:bool=True) -> '__class__':
    """
    returns a new GeoTensor object with the spatial dimensions sliced

    Args:
        window: window to slice the current GeoTensor
        boundless: read from window in boundless mode (i.e. if the window is larger or negative it will pad
            the GeoTensor with `self.fill_value_default`)

    Raises:
        rasterio.windows.WindowError: if `window` does not intersect the data

    Returns:
        GeoTensor object with the spatial dimensions sliced

    """

    window_data = rasterio.windows.Window(col_off=0, row_off=0,
                                          width=self.width, height=self.height)
    if boundless:
        slice_dict, pad_width = window_utils.get_slice_pad(window_data, window)
        need_pad = any(p != 0 for p in pad_width["x"] + pad_width["y"])
        X_sliced = self.isel(slice_dict)
        if need_pad:
            X_sliced = X_sliced.pad(pad_width=pad_width, mode="constant",
                                    constant_values=self.fill_value_default)
        return X_sliced
    else:
        window_read = rasterio.windows.intersection(window, window_data)
        slice_y, slice_x = window_read.toslices()
        slice_dict = {"x": slice_x, "y": slice_y}
        slices_ = self._slice_tuple(slice_dict)
        transform_current = rasterio.windows.transform(window_read, transform=self.transform)
        return GeoTensor(self.values[slices_], transform_current, self.crs,
                         self.fill_value_default)

resize(output_shape=None, resolution_dst=None, anti_aliasing=True, anti_aliasing_sigma=None, interpolation='bilinear', mode_pad='constant')

Resize the geotensor to match a certain size output_shape. This function works with GeoTensors of 2D, 3D and 4D. The geoinformation of the output tensor is changed accordingly.

Parameters:

Name Type Description Default
output_shape Optional[Tuple[int, int]]

output spatial shape if None resolution_dst must be provided. If not provided, the output shape is computed from the resolution_dst rounding to the closest integer.

None
resolution_dst Optional[Tuple[float, float]]

output resolution if None output_shape must be provided.

None
anti_aliasing bool

Whether to apply a Gaussian filter to smooth the image prior to downsampling

True
anti_aliasing_sigma Optional[Union[float, ndarray]]

anti_aliasing_sigma : {float}, optional Standard deviation for Gaussian filtering used when anti-aliasing. By default, this value is chosen as (s - 1) / 2 where s is the downsampling factor, where s > 1

None
interpolation Optional[str]

Algorithm used for resizing: 'nearest' | 'bilinear' | 'bicubic'

'bilinear'
mode_pad str

mode pad for resize function

'constant'

Returns:

Type Description
__class__

resized GeoTensor

Examples:

>>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> resized = gt.resize((50, 50))
>>> assert resized.shape == (3, 50, 50)
>>> assert resized.res == (2*gt.res[0], 2*gt.res[1])
Source code in georeader/geotensor.py
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
def resize(self, output_shape:Optional[Tuple[int,int]]=None,
           resolution_dst:Optional[Tuple[float,float]]=None,
           anti_aliasing:bool=True, anti_aliasing_sigma:Optional[Union[float,np.ndarray]]=None,
           interpolation:Optional[str]="bilinear",
           mode_pad:str="constant")-> '__class__':
    """
    Resize the geotensor to match a certain size output_shape. This function works with GeoTensors of 2D, 3D and 4D.
    The geoinformation of the output tensor is changed accordingly.

    Args:
        output_shape: output spatial shape if None resolution_dst must be provided. If not provided, 
            the output shape is computed from the resolution_dst rounding to the closest integer.
        resolution_dst: output resolution if None output_shape must be provided.
        anti_aliasing: Whether to apply a Gaussian filter to smooth the image prior to downsampling
        anti_aliasing_sigma:  anti_aliasing_sigma : {float}, optional
            Standard deviation for Gaussian filtering used when anti-aliasing.
            By default, this value is chosen as (s - 1) / 2 where s is the
            downsampling factor, where s > 1
        interpolation: Algorithm used for resizing: 'nearest' | 'bilinear' | 'bicubic'
        mode_pad: mode pad for resize function

    Returns:
         resized GeoTensor

    Examples:
        >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> resized = gt.resize((50, 50))
        >>> assert resized.shape == (3, 50, 50)
        >>> assert resized.res == (2*gt.res[0], 2*gt.res[1])
    """
    input_shape = self.shape
    spatial_shape = input_shape[-2:]
    resolution_or = self.res


    assert len(output_shape) == 2, f"Expected output shape to be the spatial dimensions found: {output_shape}"
    if output_shape is None:
        assert resolution_dst is not None, f"Can't have output_shape and resolution_dst as None"
        output_shape = int(round(spatial_shape[0] / resolution_or[0] * resolution_dst[0])), \
                        int(round(spatial_shape[1] / resolution_or[1] * resolution_dst[1]))

    else:
        assert resolution_dst is None, f"Both output_shape and resolution_dst can't be provided"
        resolution_dst =  spatial_shape[0]*resolution_or[0]/output_shape[0], \
                      spatial_shape[1]*resolution_or[1]/output_shape[1]

    # Compute output transform
    transform_scale = rasterio.Affine.scale(resolution_dst[0]/resolution_or[0], resolution_dst[1]/resolution_or[1])
    transform = self.transform * transform_scale

    resize_kornia = False
    if torch_installed:
        if isinstance(self.values, torch.Tensor):
            resize_kornia = True

    if resize_kornia:
        # TODO
        # https://kornia.readthedocs.io/en/latest/geometry.transform.html#kornia.geometry.transform.resize
        raise NotImplementedError(f"Not implemented for torch Tensors")
    else:
        from skimage.transform import resize
        # https://scikit-image.org/docs/stable/api/skimage.transform.html#skimage.transform.resize
        output_tensor = np.ndarray(input_shape[:-2]+output_shape, dtype=self.dtype)
        if len(input_shape) == 4:
            for i,j in product(range(0,input_shape[0]), range(0, input_shape[1])):
                if (not anti_aliasing) or (anti_aliasing_sigma is None) or isinstance(anti_aliasing_sigma, numbers.Number):
                    anti_aliasing_sigma_iter = anti_aliasing_sigma
                else:
                    anti_aliasing_sigma_iter = anti_aliasing_sigma[i, j]
                output_tensor[i,j] = resize(self.values[i,j], output_shape, order=ORDERS[interpolation],
                                            anti_aliasing=anti_aliasing, preserve_range=False,
                                            cval=self.fill_value_default,mode=mode_pad,
                                            anti_aliasing_sigma=anti_aliasing_sigma_iter)
        elif len(input_shape) == 3:
            for i in range(0,input_shape[0]):
                if (not anti_aliasing) or (anti_aliasing_sigma is None) or isinstance(anti_aliasing_sigma, numbers.Number):
                    anti_aliasing_sigma_iter = anti_aliasing_sigma
                else:
                    anti_aliasing_sigma_iter = anti_aliasing_sigma[i]
                output_tensor[i] = resize(self.values[i], output_shape, order=ORDERS[interpolation],
                                          anti_aliasing=anti_aliasing, preserve_range=False,
                                          cval=self.fill_value_default,mode=mode_pad,
                                          anti_aliasing_sigma=anti_aliasing_sigma_iter)
        else:
            output_tensor[...] = resize(self.values, output_shape, order=ORDERS[interpolation],
                                        anti_aliasing=anti_aliasing, preserve_range=False,
                                        cval=self.fill_value_default,mode=mode_pad,
                                        anti_aliasing_sigma=anti_aliasing_sigma)

    return GeoTensor(output_tensor, transform=transform, crs=self.crs,
                     fill_value_default=self.fill_value_default)

same_extent(other, precision=0.001)

Check if two GeoTensors have the same georeferencing (crs and transform)

Parameters:

Name Type Description Default
other __class__ | GeoData

GeoTensor to compare with. Other GeoData object can be passed (it requires crs, transform and shape attributes)

required
precision float

precision to compare the transform. Defaults to 1e-3.

0.001

Returns:

Name Type Description
bool bool

True if both GeoTensors have the same georeferencing.

Source code in georeader/geotensor.py
176
177
178
179
180
181
182
183
184
185
186
187
def same_extent(self, other:'__class__', precision:float=1e-3) -> bool:
    """
    Check if two GeoTensors have the same georeferencing (crs and transform)

    Args:
        other (__class__ | GeoData): GeoTensor to compare with. Other GeoData object can be passed (it requires crs, transform and shape attributes)
        precision (float, optional): precision to compare the transform. Defaults to 1e-3.

    Returns:
        bool: True if both GeoTensors have the same georeferencing.
    """
    return self.transform.almost_equals(other.transform, precision=precision) and window_utils.compare_crs(self.crs, other.crs) and (self.shape[-2:] == other.shape[-2:])

squeeze()

Remove single-dimensional entries from the shape of the GeoTensor values. It does not squeeze the spatial dimensions (last two dimensions).

Returns:

Name Type Description
GeoTensor __class__

GeoTensor with the squeezed values.

Source code in georeader/geotensor.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
def squeeze(self) -> '__class__':
    """
    Remove single-dimensional entries from the shape of the GeoTensor values.
    It does not squeeze the spatial dimensions (last two dimensions).

    Returns:
        GeoTensor: GeoTensor with the squeezed values.
    """

    # squeeze all but last two dimensions
    squeezed_values = np.squeeze(self.values, axis=tuple(range(self.values.ndim - 2)))

    return GeoTensor(squeezed_values, transform=self.transform, crs=self.crs,
                     fill_value_default=self.fill_value_default)

valid_footprint(crs=None, method='all')

vectorizes the valid values of the GeoTensor and returns the footprint as a Polygon.

Parameters:

Name Type Description Default
crs Optional[str]

Coordinate reference system. Defaults to None.

None
method str

"all" or "any" to aggregate the channels of the image. Defaults to "all".

'all'

Returns:

Type Description
Union[MultiPolygon, Polygon]

Polygon or MultiPolygon: footprint of the GeoTensor.

Source code in georeader/geotensor.py
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
def valid_footprint(self, crs:Optional[str]=None, method:str="all") -> Union[MultiPolygon, Polygon]:
    """
    vectorizes the valid values of the GeoTensor and returns the footprint as a Polygon.

    Args:
        crs (Optional[str], optional): Coordinate reference system. Defaults to None.
        method (str, optional): "all" or "any" to aggregate the channels of the image. Defaults to "all".

    Returns:
        Polygon or MultiPolygon: footprint of the GeoTensor.
    """
    valid_values = self.values != self.fill_value_default
    if len(valid_values.shape) > 2:
        if method == "all":
            valid_values = np.all(valid_values, 
                                  axis=tuple(np.arange(0, len(valid_values.shape)-2).tolist()))
        elif method == "any":
            valid_values = np.any(valid_values, 
                                  axis=tuple(np.arange(0, len(valid_values.shape)-2).tolist()))
        else:
            raise NotImplementedError(f"Method {method} to aggregate channels not implemented")

    from georeader import vectorize
    polygons = vectorize.get_polygons(valid_values, transform=self.transform)
    if len(polygons) == 0:
        raise ValueError("GeoTensor has no valid values")
    elif len(polygons) == 1:
        pol = polygons[0]
    else:
        pol = MultiPolygon(polygons)
    if crs is None:
        return pol

    return window_utils.polygon_to_crs(pol, self.crs, crs)

write_from_window(data, window)

Writes array to GeoTensor values object at the given window position. If window surpasses the bounds of this object it crops the data to fit the object.

Parameters:

Name Type Description Default
data Tensor

Tensor to write. Expected: spatial dimensions window.width, window.height. Rest: same as self

required
window Window

Window object that specifies the spatial location to write the data

required

Examples:

>>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> data = np.random.rand(3, 50, 50)
>>> window = rasterio.windows.Window(col_off=7, row_off=9, width=50, height=50)
>>> gt.write_from_window(data, window)
Source code in georeader/geotensor.py
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
def write_from_window(self, data:Tensor, window:rasterio.windows.Window):
    """
    Writes array to GeoTensor values object at the given window position. If window surpasses the bounds of this
    object it crops the data to fit the object.

    Args:
        data: Tensor to write. Expected: spatial dimensions `window.width`, `window.height`. Rest: same as `self`
        window: Window object that specifies the spatial location to write the data

    Examples:
        >>> gt = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> data = np.random.rand(3, 50, 50)
        >>> window = rasterio.windows.Window(col_off=7, row_off=9, width=50, height=50)
        >>> gt.write_from_window(data, window)

    """
    window_data = rasterio.windows.Window(col_off=0, row_off=0,
                                          width=self.width, height=self.height)
    if not rasterio.windows.intersect(window, window_data):
        return

    assert data.shape[-2:] == (window.width, window.height), f"window {window} has different shape than data {data.shape}"
    assert data.shape[:-2] == self.shape[:-2], f"Dimension of data in non-spatial channels found {data.shape} expected: {self.shape}"

    slice_dict, pad_width = window_utils.get_slice_pad(window_data, window)
    slice_list = self._slice_tuple(slice_dict)
    # need_pad = any(p != 0 for p in pad_width["x"] + pad_width["y"])

    slice_data_spatial_x = slice(pad_width["x"][0], None if pad_width["x"][1] == 0 else -pad_width["x"][1])
    slice_data_spatial_y = slice(pad_width["y"][0], None if pad_width["y"][1] == 0 else -pad_width["y"][1])
    slice_data = self._slice_tuple({"x": slice_data_spatial_x, "y" : slice_data_spatial_y})
    self.values[slice_list] = data[slice_data]

concatenate(geotensors, axis=0)

Concatenates a list of geotensors along a given axis, assert that all of them has same shape, transform and crs.

Parameters:

Name Type Description Default
geotensors List[GeoTensor]

list of geotensors to concat. All with same shape, transform and crs.

required
axis int

axis to concatenate. Must be less than the number of dimensions of the geotensors minus 2. default is 0.

0

Returns:

Type Description
GeoTensor

geotensor with extra dim at the front: (len(geotensors),) + shape

Examples:

>>> gt1 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt2 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt3 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt = concatenate([gt1, gt2, gt3], axis=0)
>>> assert gt.shape == (9, 100, 100)
Source code in georeader/geotensor.py
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
def concatenate(geotensors:List[GeoTensor], axis:int=0) -> GeoTensor:
    """
    Concatenates a list of geotensors along a given axis, assert that all of them has same shape, transform and crs.

    Args:
        geotensors: list of geotensors to concat. All with same shape, transform and crs.
        axis: axis to concatenate. Must be less than the number of dimensions of the geotensors minus 2.
            default is 0.

    Returns:
        geotensor with extra dim at the front: (len(geotensors),) + shape

    Examples:
        >>> gt1 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt2 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt3 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt = concatenate([gt1, gt2, gt3], axis=0)
        >>> assert gt.shape == (9, 100, 100)
    """
    assert len(geotensors) > 0, "Empty list provided can't concat"

    if len(geotensors) == 1:
        return geotensors[0].copy()

    first_geotensor = geotensors[0]

    # Assert the axis is NOT an spatial axis
    assert axis < len(first_geotensor.shape) - 2, f"Can't concatenate along spatial axis"

    array_out = np.concatenate([gt.values for gt in geotensors], axis=axis)

    return GeoTensor(array_out, transform=first_geotensor.transform, crs=first_geotensor.crs,
                     fill_value_default=first_geotensor.fill_value_default)

stack(geotensors)

Stacks a list of geotensors, assert that all of them has same shape, transform and crs.

Parameters:

Name Type Description Default
geotensors List[GeoTensor]

list of geotensors to concat. All with same shape, transform and crs.

required

Returns:

Type Description
GeoTensor

geotensor with extra dim at the front: (len(geotensors),) + shape

Examples:

>>> gt1 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt2 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt3 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
>>> gt = stack([gt1, gt2, gt3])
>>> assert gt.shape == (3, 3, 100, 100)
Source code in georeader/geotensor.py
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
def stack(geotensors:List[GeoTensor]) -> GeoTensor:
    """
    Stacks a list of geotensors, assert that all of them has same shape, transform and crs.

    Args:
        geotensors: list of geotensors to concat. All with same shape, transform and crs.

    Returns:
        geotensor with extra dim at the front: (len(geotensors),) + shape

    Examples:
        >>> gt1 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt2 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt3 = GeoTensor(np.random.rand(3, 100, 100), transform, crs)
        >>> gt = stack([gt1, gt2, gt3])
        >>> assert gt.shape == (3, 3, 100, 100)
    """
    assert len(geotensors) > 0, "Empty list provided can't concat"

    if len(geotensors) == 1:
        gt = geotensors[0].copy()
        gt.values = gt.values[np.newaxis]
        return gt

    first_geotensor = geotensors[0]
    array_out = np.zeros((len(geotensors),) + first_geotensor.shape,
                         dtype=first_geotensor.dtype)
    array_out[0] = first_geotensor.values

    for i, geo in enumerate(geotensors[1:]):
        assert geo.same_extent(first_geotensor), f"Different size in concat"
        assert geo.shape == first_geotensor.shape, f"Different shape in concat"
        assert geo.fill_value_default == first_geotensor.fill_value_default, "Different fill_value_default in concat"
        array_out[i + 1] = geo.values

    return GeoTensor(array_out, transform=first_geotensor.transform, crs=first_geotensor.crs,
                     fill_value_default=first_geotensor.fill_value_default)